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Abstract

In this dissertation, we study the peristaltic transport of nanofluids with effects of

magnetic field. Three different geometries of nanoparticle namely bricks, cylinder and

platelets are considered in our analysis. The flow geometry is considered as a curved

artery to analyse the model for various biomedical applications. The main object is to

find and analyse the numerical solution of the governing model subject to physically

pragmatic boundary conditions. The linear ordinary differential equation is found and

is solved by using finite difference mtthod. The study is concluded on the basis of the

effects of nanoparticles shapes,megnatic parameter, the curvature of the artery on the

axial velocity, heat sourse parameter, Grashof parameter, amplitude of the parastaltic

wall. The streamlines in a curved channel with variation of different flow parameters

are discussed with the help of graphical illustrations. This study inferred that the in-

stantaneous flow characteristics are affected by the magnetic parameter and curvature

parameter of the artery. It displays further that a magnetic field brings, the potential to

control the flow of blood arteries, pressure rise and pressure gradient. It is also possible

to bring down these parameters to any appropriate level by increasing/decreasing the

degree of intensity of the magnetic field. Thus, this study throws adequate light towards

the therapeutic purpose of external magnetic field in the clinical and medical care of

hemodynamic diseases.
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Chapter 1

Introduction

Peristalsis accounts for pumping fluids that deals with the propagation of sinusoidal

waves which enforces the food to protrude from mouth to esophagus. In the urinary

system, peristaltic procedure occurs due to inadvertently muscular contractions of the

ureteral wall which pumps the urine from kidneys to bladder through the ureters. In

physiology, peristaltic phenomenon is an imminent adjective of smooth muscle contrac-

tion. The mechanism of peristalsis is instructive in a large number of biological schemes

comprising blood flows and the maneuver of chyme in the gastrointestinal channel, circu-

lation of blood in blood vessels and in the efferent ducts of the male genital tract. In the

industrial field, the phenomenon of peristaltic pumping suggests various suitable appli-

cations such as transfer of sanitary fluids, blood pump in the heart, lung machine, etc.

Keeping all above valuable applications in mind, mathematical analysis of peristaltic

flows of Newtonian fluid models with immersion of different forms of Cu nanoparticles

such as Brickes, Cylinders and Platelets are presented in this thesis. The problems are

solved in dimensionless form with the help of numerical methods. The governing equa-

tions of motion are reduced under the implementation of low Reynolds number and long

wavelength.

Yin and Fung [1] have analyzed the waves peristaltically in cylindrical tubes by taking

a Newtonian fluid flow problem brought or induced by an axisymmetric proceed sinu-

soidally of tolerant amplitude imposed on the outer wall of a tube and considered the

perturbation method for solution. They also revealed that if the mean pressure gradient

approaches a certain positive critical value, the velocity diminishes to zero on the axis

and relatively larger values of the mean pressure gradient will account for reverse flow

in the fluid. After one year later, Burns and Parkes [2] have investigated the peristaltic

flow of a viscous fluid in axial symmetric pipes and symmetrical channels with the ap-

proximations of long wavelength and low Reynolds number it solved by an asymptotic

expansion, used for the stream function in powers of the amplitude ratio by assuming

1



Introduction 2

the amplitude ratio to be small. They described the effects of pressure gradient in their

work. Srivastava and Srivastava [3] analyses the caseof peristaltic movment of a fluid

under the same coditions as taken in above studies. They distributed the study in three

parts. In first part, they presented a solution for a fluid with variable viscosity in a

tapered tube. In second part, the solution was applied for plane and axisymmetric ge-

ometry, while in third one, the solution is extended to model biological fluid problems.

In the present century, the researchers are also keen to enhance the theoretical and ex-

perimental investigations of peristaltic flows as these flows have become essential part

in the progress and development of biomedical and industrial fields. Afifi and Gad [4]

have described the interaction of peristaltic flow with pulsatile magneto-fluid through a

porous medium with a transverse magnetic field. Later on, Misra and Pandey [5] have

presented the model for blood flow in peristaltic tube by considering blood is two-layer

fluid. After a couple of years, Mekheimer [6] has investigated the peristaltic flow of

blood under the effect of a magnetic field in a non-uniform channels with the conditions

of along with long wavelength and low Reynolds number. Nadeem and Akbar [7] have

observed the heat transfer effects on the peristaltic transporting of MHD viscous fluid

with changing viscosity. They have obtained the exact solution for temperature profile

and velocity field is achieved by an Adomian decomposition method (ADM) along with

the numerical solutions as well.

In all above mentioned studies, the flow problems are considered in two dimensional

geometries (tube/channels). However, the studies regarding the three dimensional peri-

staltic flows have a very little amount of literature due to the complexity of highly nonlin-

ear partial differential equations which often occur for the case of non-Newtonian models

in three dimensional geometries (channel/tube). Only a small number of researchers are

keen to work on peristaltic flow problems which deal with the three dimensional investi-

gation. Reddy et al. [8] have introduced the influence of lateral walls on peristaltic flow

in a rectangular duct under the same theoretical restrictions as taken by the researchers

in above mentioned studies. The experimental investigation has been taken into ac-

count by Aranda et al. [9] in which they presented the Stokesian peristaltic pumping in

a three-dimensional tube with a phase shifted asymmetry. Two years ago, Mekheimer

et al.[10] have made analysis regarding effect of lateral walls on peristaltic flow through

an asymmetric rectangular duct. More recently, Akram et al. [11] have presented the

flow in a wave frame of reference moving with the uniform velocity away from the fixed

frame and peristaltic waves produced on the horizontal walls of a non-uniform rectan-

gular duct are justified under lubrication approach. They have illustrated the graphical

results for the flow phenomenon and also discussed the circulating bolus scheme. Some

more studies on the topic of peristaltic flows of Newtonian and non-Newtonian fluids
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are given in [12-17].

Nanotechnology has tremendous contribution has played in the industry since nanome-

ter materials of dimension and cannot be compared physically and chemically. Animal

blood, Water, oil, ethylene glycol are famous examples of base fluids utilized for the

nanofluid occurrence. Enormous application of nanofluid is generally heat transfer, like

fuel cells, microelectronics, hybrid-powered engines, pharmaceutical processes, chiller,

domestic refrigerator, nuclear reactor coolant, grinding and space technology, etc [18,

19]. In the recent time, the interaction of nanoparticles phenomenon in peristaltic flows

has become the core of attention for many researchers, engineers, mathematicians, mod-

elers and scientists due to the wide range of applications of nanoparticles in the field

of peristaltic pumping. Nadeem and Maraj [20] mathematically analyzed for peristaltic

flow of nanofluid in a curved artery. They reduced the extremely nonlinear, partial dif-

ferential equations by employing the wave frame transformation, low Reynolds number

and long wave length assumptions. The peristaltic flow of a nanofluid in a non-uniform

tube have been produced by Akbar et al. [21].

Chapter one is based on the brief introduction of peristaltic flows. The mathematical

models of Newtonian fluids are presented.

In Chapter two, Basic definitions, governing equations and numerical schemes are also

incorporated. Two-Phase Model Governing Equations, Law of conservation of momen-

tum for two-phase nanofluid model, Energy equation for nanofluids, Thermophysical

Properties of nanoparticles, Thermal Conductivity of nanoparticles and its mathemat-

ical expression that represents thermal conductivity of different types of nanoparticles

and Methods for solutions.

In Chapter three, there is straight vertical tube is taken with outer wall moving sinu-

soidal The nanofluid comprising different geometries of nanoparticles, which is flowing

in the tube under the effects of magnetic field.

In Chapter four, we considered a vertical curved tube whose outer wall moving peri-

stallticaly. The immersion of different types of nanoparticles such as bricks, cylinders

and platelets in the tube and these nanoaprticles are also exposed to the external mag-

natic filed to control the flow of fluid.

In Chapter five includes the conclusion of the work presented in this thesis. All the

references used in this dissertation are listed in Bibliography.



Chapter 2

Basic definitions and governing

Equations

This chapter is prepared to present basic definitions related to fluid mechanics and defi-

nitions of some dimensionless numbers and equations just for the description of the flow

analysis presented in this dissertation.

2.1 Fluid

A fluid is defined as an isotropic substance, the individual particles of which deform

continuously under the application of a shearing stress, no matter how small it is.

Rheology

It is study of Newtonian fluid and non-Newtonian flow under the influence of an applied

stress.

Concept of Continuum

All matter is composed of discrete entities of atoms and molecules which contain voids

not occupied by any matter. Through the concept of such voids, the matter is dis-

tributed discretely and not continuously. Continuum is the name of abstract model that

4



Basic definitions and governing Equations 5

assumes matter is distributed continuously in the form of liquid or gas, and this model

is simply referred as continuum which provides us with the information that each fluid

property has a finite value at every point in a given continuum.

2.2 Classification of fluids

Inviscid fluid

The fluid with constant density and zero viscosity under different temperature and stress

conditions is defined as inviscid fluid.

Viscous fluid

The fluid with constant density but having resistance to shear stress is known as viscous

fluid. These fluids are divided in two different major groups: Newtonian and non-

Newtonian fluids.

Newtonian and non-Newtonian fluids

A non-viscous fluids whose stress rate is linearly proportional to its strain rate at every

point which means it obeys the Newtons law of viscosity. Such fluids do not resist de-

formation and flow freely. Example are gasoline, light-hydrocarbon oils, glycerin, sugar

solutions, mineral spirits, silicone oils, water and gases such as air etc.

A fluid violating the linear Newtonian relation between shear rate and stress is known as

non-Newtonianfluid. Such fluids do not have well defined viscosity. Its viscosity changes

with the applied strain rate. These fluids satisfy the stress-strain relation in a non-linear

manner. Examples are blood, ketchup, polymer solution and tooth paste etc.
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2.3 Basic Concepts of Heat transfer

Heat and temperature

Temperature is the average kinetic energy where as heat is the total kinetic energy of

all the fluid particles. Heat is that state of energy whose exchange can take place from

one place to another subject to the temperature difference between the two systems.

If there are two bodies with different temperatures heat flows from high to low temper-

ature. Such heat transfer take place by three basic methods describe below.

Conduction

It can be defined as the transfer of energy from the more energetic particles of substance

to the neighboring less energetic ones as a result of the interaction between the parti-

cles with no movement of material. Conduction is only because of the collision of the

molecules not due to the transfer of molecules. For solids, conduction plays an important

role in the heat transfer.

Convection

It is the mode of heat transfer between a surface and the adjoining fluid that is in motion

and it involves the combined effect of condition and fluid motion. Here heat transfer

occurs due to the transfer of molecules.

Natural convection

If the fluid motion occurs as a result of the density difference produced by the tempera-

ture difference, the process is called natural or free convection. In case of free convection

flow is generated by the body forces that occurs as the result of the density changes aris-

ing from the temperature changes in the whole fluid. These body forces are actually

generated by pressure gradients imposed on the whole fluid. That most common source

of this imposed pressure field is gravity. The body forces in this case are usually termed

as buoyancy forces. Without the existence of gravity and thermal expansion coefficient,

natural convection would not be possible.
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Forced convection

Convection is called forced convection if the fluid is forced to flow over the surface by

external means such as pump, fan or the air. The term forced convection is only applied

to flows in which the effects of the buoyancy forces are negligible.

Mixed convection

When both forced and natural convection take place at the same time and contribute

significantly to heat transfer, then it is called Mixed Convection.

Radiation

The energy transmitted by the matter in the form of electromagnetic waves is termed

as radiation does not require a material in which to propagate and can travel through

vacuum.

Specific Heat

It is defined as the amount of energy needed to increase the temperature of one kilogram

by one degree Celsius.

Thermal conductivity

The measure of the tendency of a given material to conduct heat is known as its ther-

mal conductivity. The dimension of thermal conductivity is
[
ML/T 3θ

]
and its unit is

kg.m/a3k.

Thermal diffusivity

It is defined as the ratio of heat conducted through the material to the heat stored per

unit volume.



Basic definitions and governing Equations 8

Mathematically it can be written as

∝=
K

ρCp

The dimension of the thermal diffusivity is
[
L2/T

]
and its unit is m2/s.

2.4 Dimensionless numbers

Reynolds number

The Reynolds number is a meaningful nondimensional quantity in fluid dynamics offer to

helped and predict fluid flow regimes in various fluid flow patterns. It holds many impor-

tant applications in fluid mechanic. It is denoted by Re and is mathematically written as

Re =
ρuL

µ
. (2.1)

Grashof number

The Grashof number is a nondimensionl quantity in fluid mechanics and heat transfer

which approximates the ratio of the buoyancy forces to viscous forecs applying on a

fluid. This number is denoted by Gr and is mathematically written as

Gr =
gβ(T0 − T1)D3

ν2
(2.2)

Wave number

The ratio of the width of the channel to the wavelength is called wave number. Usually

it is denoted by the Greek symbol δ and is

δ =
2πǎ

λ
(2.3)

Where ã denotes the width of the channel andλthe wavelength.
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2.5 Amplitude ratio

The ratio of wave amplitude of the peristaltic wall to the thicknesses of the pipes is

called amplitude ratio. This number can be written as

ε =
b̃

ã
(2.4)

2.6 Some fundamentals of peristaltic transport

Peristalic transport

Peristalsis is a symmetrical radial contraction or relaxation of along the length of a

distensible tube with some material [22- 24].

Pumping

Pumping phenomenon is a characteristic feature of peristaltic transport. The operation

of a pump of moving liquids from low pressures to high pressure under certain conditions

is termed as pumping. We can briefly pumping further as:

Positive and negative pumping

The pumping is called positive or negative depending on weather the mean flow rate Q

is positive or negative.

Adverse and favourable pressure gradient

If the pressure rise per wavelength (Pλ) is positive gradient is said to be adverse and

favorable otherwise.

Peristaltic pumping

Here the flow rate is positive (Q > 0) and pressure rise is adverse (Pλ > 0).
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Augmented pumping

It occurs when flow rate is positive (Q > 0) but in this case pressure rise is favorable

(Pλ < 0).

Retrograde pumping

In this situation the flow rate is negative (Q < 0) and pressure rise is adverse (Pλ > 0).

Free pumping

In this case the flow rate is positive (θ > 0) but pressure rise neither adverse nor

favorable.

In wordsPλ = 0.

Free pumping flux

The critical value of mean flow rate Q corresponding to Pλ = 0 is called free pumping

flux.

Bolus

Volume of the fluid trapped with in closed streamlines is termed as bolus.

Trapping

The phenomenon of formation of bolus is known as trapping.

2.7 Fundamental equations

Continuity equation

This equation is derived by using the conservation law of mass which is defined as that

the mass can neither be distorted. In mathematical form the continuity equation is the
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absence of sources or sinks is expressed as follows

∂ρ

∂t
+∇ ·

(
ρṼ
)

= 0, (2.5)

Where ρ is the fluid density , Ṽ = (U, V,W ) the velocity of the fluid and t is the time.

The above equation for an incompressible fluid is reduced as

∇ · Ṽ = 0. (2.6)

The above forms of continuity indicate absence of sources/ sink in the control volume.

Equation of motion

This equation is resulted by the law of conservation of linear momentum and is expressed

ρ
dṼ

dt
= ∇ · S̃ + ρb, (2.7)

where b represent by the body force and S̃ represent the Cauchy stress tensor.

In case of curved channel when

Ṽ =
[
Ṽ
(
X̄, R̄, t̄

)
, Ũ
(
X̄, R̄, t̄

)
, 0
]
, (2.8)

the Navier-Stokes equation for curved channel are

∂Ṽ

∂t
+
(
Ṽ · ∇

)
Ṽ − Ũ2

R̄+ R̃∗
= (∇ · S̃)R̄, (2.9)

∂Ũ

∂t
+
(
Ṽ · ∇

)
Ũ − Ṽ Ũ2

R̄+ R̃∗
= (∇ · S̃)X̄ , (2.10)

Ṽ · ∇ = Ṽ
∂

∂R̄
+

Ũ · R̃∗

R̄+ R̃∗
∂

∂X̄
. (2.11)

Here R̃∗ is the radius of the curved channel also we have neglected the body force term.

Energy equation

This equation results from the basic law of thermodynamics also called conservation law

of energy and express that the increase in the system’s internal energy of a thermody-

namic system is similar to the quantity of heat energy included to the system excluded

the quantity of energy wasted as an outcome of the work done by the system on the
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surroundings. Mathematically,

ρCp
dT

dt
= S̃ ·

(
∇Ṽ

)
+∇ · (k∇T ) . (2.12)

Where Cp is the specific heat and k the thermal conductivity.

2.8 Two-Phase Model Governing Equations

Law of conservation of momentum for two-phase nanofluid model

This law gives the equation of momentum which for nanofluid is similar to that of usual

Navier Stokes equations but in the presence of external forces which are due to heat

of nanoparticles. So the Navier-Stokes equation for nanofluid in the presence of body

forces take the following form [25]

ρnf

(
∂V

∂t
+ V ·∇V

)
= −∇P + µnf∇2V + g(ργ)nf (T − T 0) , (2.13)

Where ρnf is the density, µnf is the viscosity.

Energy equation

ρcp
dT

dt
= K∇2 T +Q0, (2.14)

knf is the thermal conductivity, γnf is the thermal expansion coefficient and (ρcp)nf is

the heat capacitance.

Thermophysical Properties

Both fluid and solid characteristics are supposed to be constant. The constant α for

Cu, Al2O3, , and TiO2 are directly taken from a curve-fit relations. The general model

for nanofluid is shown in this section [26-27].

1. Density

ρnf = (1− φ) ρf + φρs. (2.15)
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2. Specific Heat

(ρcp)nf = φ(ρcp)s + (1− φ) (ρcp)f. (2.16)

3. Thermal Expansion Coefficient

(ργ)nf = φ(ργ)s + (1− φ) (ργ)f. (2.17)

4. Viscosity

µnf =
1

(1− φ)5/2
. (2.18)

Thermal Conductivity

knf = kstatic + kBrownian, (2.19)

kstatic
kf

=
(knp + 2kf)− 2φ (knp + kf)

(knp + 2kf) + 2φ (knp + kf)
, (2.20)

kstatic
kf

=
knp + (1 +m)kf − φ(1 +m) (knp − kf)

knp + (1 +m)kf + φ (knp − kf)
, (2.21)

kBrownian = 5× 104γφρfCp,f

√
kT

2ρnfRnp
f (T, φ) , (2.22)

where k = 1.3807×10−23J/K and γ is the fraction of the volume of liquid which transfer

with a particle, here,

f (T, φ) =
(
2.8217× 10−2φ+ 3.917× 10−3φ

)( T + 273.15

To + 273.15

)

+
(
−3.0669× 10−2φ− 3.99123× 10−3φ

)
. (2.23)

Physical properties Fluid phase (blood) Cu Al2O3 TiO2

Cp(J/kgK) 3594 385 765 686.2

ρ (kg/m3) 1063 8933 3970 4250

K (W/mK) 0.492 400 40 8.9538

γ × 10− 5(1/K) 0.18 1.67 0.85 0.9

Table 2.1: Thermophysical properties of fluid and nanoparticles
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Nanoparticles Shape factor

Cu−Bricks 3.7

Cu− Cylinders 4.9

Cu− Platelets 5.7

Table 2.2: Copper- nanoparticle shape factor (m)

2.9 Solution Methodology

Most of the natural procedure can be effectual and properly elaborated microscopically,

without considering the single attitude of atoms, molecules, electrons etc. The common

characteristics like stress, pressure, deformation, density, velocity, temperature, concen-

tration or electromagnetic field are modeled as by partial differential equations (PDEs)

which deal with the formulation of many engineering and scientific problems.

In physical phenomena, PDEs (second order) occurred in three forms i.e., elliptic,

parabolic or hyperbolic. The general form of a PDE of a function U (x1, x2, x3 · · · , xn)

can be expressed as

F

(
x1, x2, x3 · · · , xn, U, ∂U

∂x1
, ∂U
∂x2

, ∂U
∂x3

, · · · , ∂U
∂xn

, ∂2U
∂x1∂x1

,
∂2U

∂x1∂x2
, ∂2U
∂x1∂x3

· · · , ∂2U
∂x1∂xn

, · · ·

)
= 0. (2.24)

In the present thesis, emphasize will be devoted to the properties and solution of hyper-

bolic PDEs. The most common models of hyperbolic PDE are a wave equation. A wave

equation can either be linear or nonlinear depending upon the nature of the physical

problem. To work a linear PDE, several methods are usable in the literature; like method

of separation of variable, Laplace and Fourier transform methods, Greens functions and

Eigen function expansion methods etc. Although, solutions of nonlinear PDEs is not

an easy task. The nonlinear PDEs have a less chances to have exact or closed form

solutions. For that reason, one has to seek some approximate numerical or analytical

techniques. However, the analytical solutions have more significance than numerical be-

cause they provide a way of checking the convergence and validity by getting number of

approximate solutions either numerical or empirical [28]. There exists a number of an-

alytical techniques which can solve nonlinear PDEs encountered in almost all branches

of science and engineering. Some of them are listed as: perturbation method, homotopy

analysis method, homotopy perturbation method, optimal homotopy method. But here,

we will only explain the analytical and finite difference method which are employed in

the subsequent chapters.

Consider the differential equation

d2U

dx2
+A (x)

dU

dx
+B (x)U = D (x) , (2.25)
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subject to the boundary conditions:

dU
dx (a) = U0 and U (b) = UN .

This problem is called a two point boundary value problem, since the boundary condition

is given at two distinct points. To solve this equation by finite difference method, we

will attempt to compute a gird function consisting of values

U0, U1, U2, U3, · · · , UN ,

where Ui is our approximation to the solution U . Here, xi = x0+ih; i = 1, 2, 3, · · · , N
and h = b−a

n . is the mesh width or the distance between grid points. The nodes are

a = x1, x2, x3, · · · , xN = b

. At any node the equation (2.25) becomes

d2U(xn)

dx2
+A(xn)

dU(xn)

dx
+B (xn)U(xn) = D(xn). (2.26)

Assume, U (xi) = Ui, A (xi) = Ai, B (xi) = Bi and D (xi) = Di.

If we replace d2U(xn)
dx2 and dU(xn)

dx by the centered difference approximations such as [29]

d2U(xn)

dx2
=
Un+1 − 2Un + Un−1

h2
(2.27)

and
dU(xn)

dx
=
Un+1 − Un−1

2h
(2.28)

we obtain the set of Eqs. (2.27) and (2.28) in Eq. (2.26),

Un+1 − 2Un + Un−1

h2
+An

Un+1 − Un−1

2h
+BnUn = Dn for n = 1, 2, 3, · · · , N. (2.29)

(2− hAn)Un−1 +
(
2h2Bn − 4

)
Un + (2 + hAn)Un+1 = 2h2Dn for n = 1, 2, 3, · · · , N.

(2.30)

Using notations

an = (2− hAn) , bn =
(
2h2Bn − 4

)
, cn = (2 + hAn) and γn = 2h2Dn, (2.31)

anUn−1 + bnUn + cnUn+1 = γn. (2.32)

From the boundary conditions, U1−U0
h = Un, UN = b.

We have, U0 = U1 − Unh, UN = b.

In Eq (2.32), putting r = 1, 2, 3, · · · , N − 1,we obtain
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(a1 + b1)U1 + c2U2 = a1hU0,

a2U1 + b2U2 + c2U3 = γ2,

a3U2 + b3U3 + c3U3 = γ3,
...

...
...

aN−2UN−3 + bN−2UN−2 + cN−2UN−1 = γN−2,

aN−2UN−3 + bN−1UN−1 + cN−1UN = γN−1.

We have a linear system of (N − 1) Eqs. For (N − 1) unknowns which can be written

in the form

MY = S

where,

M =



a1 + b1 c1

0 a2

c2 · · ·
b2 · · ·

0 0

0 0

0 0
...

...

a3 · · ·
... · · ·

0 0
...

...

0 0

0 0

0 · · ·
0 · · ·

bN−2 cN−2

aN−1 bN−1


,

Y =



U0

U1

U2

...

UN−2

UN−1


,

S =



γ1 + ahUa

γ2

γ3

...

γN−1

γN−1 − CN−1Ub


.



Chapter 3

Ferromagnetic effects for

peristaltic flow of Cu-blood

nanofluid for different shapes of

nanosized particles

3.1 Introduction

In this article, we consider Cu-blood nanofluid with effect of diverse shaped nanopar-

ticles. For the efficient thermal conductivity of the nanofluids, the Hamilton-Crosser

model is applied. In addition, through the lumen, heat transfer is also studied in this

chapter. Analytical solutions are gained from momentum and energy equations with

long wavelength and low Reynold number approximation technique, and the behavior

of parameters of interest is elaborated graphically.

3.2 Formulation of the problem

Consider the flow of copper nanofluid of different geometries such as bricks, platelets

and cylinders in the axisymmetric circular straight tube of finite length (L). The motion

of the flow of different nanoparticles is controlled and managed by the external magnetic

field. The outermost surfaces or walls of the artery or tubes exhibit peristaltic motion.

The heat transfer analysis with different geometries of nanoparticles in the base fluid

(blood) is considered. Moreover, a constant temperature T0 has been taken at the

sinusoidally propagating wall of the straight tube (Fig. 3.1).

17
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The flow in the fixed tube is time dependent in the fixed coordinates system. The

nanofluid flow is time independent in a wave frame coordinates system with the same

speed as well as the wave moves in the Z-direction. The walls of the artery are considered

as:

Figure 3.1: Schematic diagram of the artery.

.

R̄ = ā+ b̄sin(2π
λ (Z̄ − ct̄)), Upper wall

− R̄ = −ā− b̄sin(
2π

λ
(Z̄ − ct̄)),Lowerwall (3.1)

In Eq. (3.1) c is the speed and λ denotes the wavelength.

3.3 Mathematical model

We consider the following definition of velocity

V̄ = [V̄R̄(Z̄, R̄, t̄), 0, V̄Z̄(Z̄, R̄, t̄)] (3.2)

The equations of the conservation of mass and the linear momentum of the unsteady

flow of a nanofluid using a continuum approach

divV = 0, (3.3)
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ρnf
DV

Dt
= divS + g(ργ)nf (T − T1) (3.4)

(ρcp)nf
DT

Dt
= S · L +Knf∇2T (3.5)

Expression of Cauchy stress S tensor for viscous fluid is

S = −pI + µnfA (3.6)

In which I is the identity tensor, P̄ (Z̄, R̄, t̄) the pressure, µnf is the dynamic viscosity of

nanofluid and the Rivlin- Erickson tensor A is

A = L + LT , (3.7)

L = gradV, (3.8)

Where superscript T represents the matrix transpose and

L =


∂V̄r
∂R̄

1
R̄
∂V̄r
∂Θ̄
− V̄θ

R̄
∂V̄r
∂Z̄

∂V̄Θ3

∂R̄
1
R̄
∂V̄Θ

∂Θ̄
+ V̄r

R̄
∂V̄Θ

∂Z̄
∂V̄z
∂R̄

1
R̄
∂V̄z
∂Θ̄

∂V̄z
∂Z̄



L =


∂V̄r
∂R̄

0 ∂V̄r
∂Z̄

0 V̄r
R̄

0
∂V̄z
∂R̄

0 ∂V̄z
∂Z̄



LT =


∂V̄r
∂R̄

0 ∂V̄z
∂R̄

0 V̄r
R̄

0
∂V̄r
∂Z̄

0 ∂V̄z
∂Z̄


Eq. (3.7) is of the form

A =

 2∂V̄r
∂R̄

0 ∂V̄r
∂Z̄

+ ∂V̄z
∂R̄

V̄z
R̄

2 V̄z
R̄

0
∂V̄r
∂Z̄

+ ∂V̄r
∂Z̄

0 2∂V̄z
∂Z̄


The constitutive continuity equation, momentum and energy in the presence of

body force for the considered geometry are

1

R̄

∂V̄r
∂R̄

+
∂V̄z
∂Z̄

= 0, (3.9)
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ρnf (V̄r
∂V̄r
∂R̄

+ V̄z
∂V̄r
∂Z̄

)

= −∂P̄
∂R̄

+ µnf
∂

∂R̄
(2
∂V̄r
∂R̄

) + µnf
2

R̄
(
∂V̄r
∂R̄
− V̄r
R̄

) + µnf
∂

∂Z̄
(
∂V̄r
∂R̄

+
∂V̄z
∂Z̄

), (3.10)

ρnf (V̄r
∂V̄z
∂R̄

+ V̄z
∂V̄z
∂Z̄

)

= −∂P̄
∂Z̄

+µnf
∂

∂Z̄
(2
∂V̄z
∂Z̄

)+µnf
1

R̄

∂V̄z
∂R̄

(R̄
∂V̄r
∂Z̄

+R̄
∂V̄z
∂R̄

)−σB2
0 V̄z+ρnfgα(T̄−T0), (3.11)

(ρcp)nf (V̄r
∂T

∂R̄
+ V̄z

∂T

∂Z̄
) = knf (

∂2T

∂R̄2
+

1

R̄

∂2T

∂R̄2
+
∂2T

∂Z̄2
). (3.12)

Consider the flow of copper nanofluid of different geometries such as bricks, platelets

and cylinders in the axisymmetric circular curved artery of finite length (L). The

motion of the flow of different nanoparticles is controlled and managed by the

external magnetic field. The outermost surfaces or walls of the artery or tubes

exhibit peristaltic motion. The heat transfer analysis with different geometries of

nanoparticles in the base fluid (blood) is considered. Moreover, a constant tem-

perature T0 has been taken at the sinusoidally propagating wall of the curved tube

(Fig. 3.1).

The flow in the fixed tube is time dependent in the fixed coordinates system. The

nanofluid flow is time independent in a wave frame coordinates system with the

same speed as well as the wave moves in the Z-direction.

using the following transformations in the two frames are:

z̄ = Z̄ − ct̄, r̄ = ¯R, v̄r = V̄r, v̄z = V̄z − c, p̄(z̄, r̄, t̄) = P̄ (Z̄, R̄, t̄). (3.13)

The governing equations of motions representing an incompressible nanofluid can

be expressed as:

1

r̄

∂r̄v̄r
∂r̄

+
∂(v̄z + c)

∂(z̄ + ct̄)
= 0, (3.14)
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ρnf (v̄r
∂v̄r
∂r̄

+ (v̄z + c)
∂v̄r
∂z̄

)

= −∂p̄
∂r̄

+ µnf
∂

∂r̄
(2
∂v̄r
∂r̄

) + µnf
2

r̄
(
∂v̄r
∂r̄
− v̄r

r̄
) + µnf

∂

∂z̄
(
∂v̄r
∂r̄

+
∂(v̄z + c)

∂(z̄ + ct̄)
), (3.15)

ρnf (v̄r
∂(v̄z + c)

∂r̄
+ (v̄z + c)

∂(v̄z + c)

∂(z̄ + ct̄)
)

= − ∂p̄

∂(z̄ + ct̄)
+µnf

∂

∂(z̄ + ct̄)
(2
∂(v̄z + c)

∂(z̄ + ct̄)
)+µnf

1

r̄

∂(v̄z + c)

∂r̄
(r̄

∂v̄r
∂(z̄ + ct̄)

+r̄
∂(v̄z + c)

∂r̄
),

− σB2
0(v̄z + c) + ρnfgα(T̄ − T0) (3.16)

(ρcp)nf (v̄r
∂T

∂r̄
+ v̄z

∂T

∂(z̄ + ct̄)
) = knf (

∂2T

∂r̄2
+

1

r̄

∂2T

∂r̄2
+

∂2T

∂(z̄ + ct̄)2
) +Q0. (3.17)

Simplifying above equations, we obtain;

1

r̄

∂r̄v̄r
∂r̄

+
∂v̄z
∂z̄

= 0, (3.18)

ρnf (v̄r
∂v̄r
∂r̄

+ v̄z
∂v̄r
∂z̄

)

= −∂p̄
∂r̄

+ µnf
∂

∂r̄
(2
∂v̄r
∂r̄

) + µnf
2

r̄
(
∂v̄r
∂r̄
− v̄r

r̄
) + µnf

∂

∂z̄
(
∂v̄r
∂r̄

+
∂v̄r
∂z̄

), (3.19)

ρnf (v̄r
∂v̄z
∂r̄

+ v̄z
∂v̄z
∂z̄

)

= −∂p̄
∂z̄

+ µnf
∂

∂z̄
(2
∂v̄z
∂z̄

) + µnf
1

r̄

∂v̄z
∂r̄

(r̄
∂v̄r
∂z̄

+ r̄
∂v̄z
∂r̄

)− σB2
0(v̄z + c) + ρnfgα(T̄ − T0),

(3.20)

(ρcp)nf (v̄r
∂T

∂r̄
+ v̄z

∂T

∂z̄
) = knf (

∂2T

∂r̄2
+

1

r̄

∂2T

∂r̄2
+
∂2T

∂z̄2
) +Q0. (3.21)

where vr and vz are the velocities in the directions of axial and radial directions

of the flow respectively. The fluid local temperature is T . Moreover, the effective
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density is ρnf , the effective thermal conductivity is knf ,the effective thermal dif-

fusibility is αnf ,the effective dynamic viscosity is µnf and the heat capacitance is

(ρcp)nf of the nanfluid.

We utilize the thermophysical properties which are mentioned as [30- 32].

µnf =
µf

(1−φ)2..5 ,

ρnf = φρs + (1− φ)ρf , (ργ)nf = φ(ργ)s, + (1− φ)(ργ)f

(ρcp)nf = φ(ρcp)s + (1− φ)(ρcp)f . (3.22)

In the above expressions ρf is density, µf is viscosity, the heat capacitance and

thermal conductivity of base fluid represent (ρcp)f and kf respectively. ρs is den-

sity, γs is thermal expansion coefficient, (ρcp)s is heat capacitance, ks is thermal

conductivity of the materials constituting Cu-nanoparticles and φ is the solid

nanoparticle of nanofluid. By introducing a shape factor, Maxwell [33] and other

worker have developed Hamilton and Crosser model [34] in which geometries of ir-

regular particle taken into account As stated by this model, when the nanoparticles

thermal conductivity is 100 times enhanced than of the base fluid, the expression

of thermal conductivity of different geometries of nanoparticles will be:

knf
kf

=

(
ks + (m+ 1)kf − (m+ 1)(kf − ks)φ

ks + (m+ 1)kf + (kf − ks)φ

)
(3.23)

here, the thermal conductivities of the particle material and the base fluid are ks

and kf . The shape factors of geometries of nanoparticles is m in HamiltonCrosser

model. As stated by them, the values of geometrical shape factor of nanoparticle

are stated in Table 3.1 and Table 3.2.

Physical properties Fluid phase (blood). Cu

cp(J/kgK) 3594 385

ρ(kg/m3) 1063 8933

k(W/mK) 0.492 400

γ/K × 10−5 0.18 1.67

Table 3.1: Theromophysical properties of copper nanoparticles.
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.

Nanoparticles shape factor number

Platelets 5.7

Cylinders 4.9

Bricks 3.7

Table 3.2: Nanoparticles type and shape factor number.

.

The dimensional boundary conditions are:

∂vz
∂r

= 0,
∂θ

∂r
= 0 at r = 0,vz = −1, θ = 0 at r = R(z) = 1 + εcos(2πz) (3.24)

In order to achieve the simplified governing equations, we bring into use the fol-

lowing non-dimensional quantities;

r =
r̄

a
, z =

z̄

λ
, vr =

λv̄r
ac

, vz =
v̄z
c
, t =

ct̄

λ
,

p =
a2p̄

λcµf
, Gr =

ρnfa2gαT0

cµf
, ξ =

Q0a
2

T0knf
, θ =

T − T0

T0

.

Making use of these non-dimensional quantities in equations (3.18)to(3.21)

1

ar

∂
(
ar acvr

λ

)
∂ (ar)

+
∂ (cvz)

∂ (λz)
= 0, (3.25)

ρnf

(
acvr
λ

∂
(
acvr
λ

)
∂ (ar)

+ cvz
∂
(
acvr
λ

)
∂ (λz)

)

= −
∂
(
cλµf
a2 p

)
∂ (ar)

+ µnf
∂

∂ (ar)

(
2
∂
(
acvr
λ

)
∂ (ar)

)
+ µnf

2

ar

(
∂
(
acvr
λ

)
∂ (ar)

−
acvr
λ

ar

)

+ µnf
∂

∂ (λz)

(
∂
(
acvr
λ

)
∂ (ar)

+
∂ (cvz)

∂ (λz)

)
(3.26)

ρnf

(
acvr
λ

∂ (cvz)

∂ (ar)
+ cvz

∂ (cvz)

∂ (λz)

)
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= −
∂
(
cλµf
a2 p

)
∂ (λz)

+ µnf
∂

∂ (λz)

(
2
∂ (cvz)

∂ (λz)

)
+ µnf

1

ar

∂ (cvz)

∂ (ar)

(
ar
∂
(
acvr
λ

)
∂ (λz)

+ ar
∂ (cvz)

∂ (ar)

)

− σB2
0 (cvz + c) + ρnfgαθT0 (3.27)

(ρcp)nf

(
acvr
λ

∂ (θT0 + T0)

∂ (ar)
+ cvz

∂ (θT0 + T0)

∂ (λz)

)

= knf

(
∂2 (θT0 + T0)

∂ar2
+

1

ar

∂2 (θT0 + T0)

∂ (ar)2 +
∂2 (θT0 + T0)

∂ (λz)2

)
+Q0. (3.28)

By simplifying above equations, we have

∂vr
∂r

+
∂vz
∂z

= 0, (3.29)

Reδ
3 ρnf
ρf

(
∂vr
∂r

+ vz
∂vr
∂z

)

= −∂p
∂r

+
µnf
µf

δ2 ∂

∂r

(
2
∂vr
∂r

)
+
µnf
µf

δ2 2

r

(
∂vr
∂r
− vr

r

)
+
µnf
µf

δ3 ∂

∂z

(
∂vr
∂r

+
∂vz
∂z

)
(3.30)

Reδ
ρnf
ρf

(
∂vz
∂r

+ vz
∂vz
∂z

)

= −∂p
∂z

+
µnf
µf

δ2 ∂

∂z

(
2
∂vz
∂z

)
+
µnf
µf

1

r

∂vz
∂r

(
δ2∂vr
∂z

+ r
∂vz
∂r

)
− σa2B2

0

µf
(vz + 1)

+
ρnfga

2αT0

cµf
θ (3.31)

ac

kf
δ (ρcp)nf

(
vr
∂θ

∂r
+ vz

∂θ

∂z

)
=
knf
kf

(
∂2θ

∂r2
+

1

r

∂θ

∂r
+ δ2 ∂

2θ

∂z2

)
+
a2Q0

T0kf
. (3.32)

Applying the assumptions of long wavelength and low Reynolds number . We obtain

the dimensionless form of constituting equations (3.30−3.32) after releasing the dashes;

∂p

∂r
= 0, (3.33)

∂p

∂z
= (1− φ)−2.5

(
∂2vz
∂r2

+
1

r

∂vz
∂r

)
− (vz + 1)M2 +Grθ (3.34)

∂2θ

∂r2
+

1

r

∂θ

∂r
+

(
ks − (ks − kf )φ+ (1 +m)kf

ks + (1 +m)(ks − kf )φ+ (1 +m)kf

)
ξ = 0. (3.35)

here the Hartmann number,Grashof number and heat absorption parameter are M ,Gr

and ξ are respectively. The dimensionless appropriate boundary conditions taken as:
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∂θ

∂r
= 0,

∂vz
∂r

= 0 at r = 0,θ = 0, vz = −1 at r = R(z) = 1 + εcos(2πz). (3.36)

3.4 Solutions development

Solving Eqs. (3.35)-(3.36) together with boundary conditions in Eq. (3.37),we obtain:

vz(r, z) =
1

4M4(1− φ)2.5
[

4I0rM
√

(1−φ)2.5

(
Gr

kf
knf

ξ +M2 dp
dz (1− φ)2.5

)
I0hM
√

(1−φ)2.5
]

− 4M2(1− φ)2.5[M2 +
dp

dz
] +Gr

kf
knf

ξ[M2(R2 − r2)(1− φ)2.5 − 4] (3.37)

θ(r, z) =
1

4

(
ks + (m+ 1)kf + (kf − ks)φ

ks + (m+ 1)kf − (m+ 1)(kf − ks)φ

)
ξ(R2 − r2) (3.38)

In fixed frame the dimensional volume flow is defined as

Q̄ =
H̄
∫

−H̄
V̄zdR̄, (3.39)

In which H̄ is a function of t and z. In wave frame above expression becomes

F̄ =
H̄
∫

−H̄
v̄zdr̄, (3.40)

where H̄ is a function of z alone.

Q̄ = F̄ + 2cH̄ (3.41)

As a fixed position z, the time average flow over a period T is

Q̄ =
1

T

T̄
∫
0
Qdt. (3.42)
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Pluging Eq. (3.42) into Eq. (3.43) and then integrating, we get

Q̄ = q̄ + 2cā (3.43)

this implies:

dp

dz
=

1

8M4R3I2(1− φ)2.5
[I0hM

2(1− φ)2.5[Gr
kf
knf

ξR2(h2M2(1− φ)2.5 − 8)

− 8M2(F +R2)(1− φ)2.5] + 16Gr
kf
knf

ξhI1RM
√

(1− φ)2.5] (3.44)

The expression Vz = 1
r
∂ψ
∂r with ψ = 0 at r = R(z) = 1 + εcos(2πz). provides the corre-

sponding stream function.

The pressure rise can be found by using the expression

∇P =
1
∫
0
(

(
∂P

∂z

)
)dz (3.45)

3.5 Graphical results and discussion

The results obtained are analytical and discussed graphically for different physical pa-

rameter in the previous segment.Figure 3.2, shows the velocity distribution for various

values of Hartmann parameter and also for geometrical shapes of the nanoparticles. It

is seen that field of velocity rises proximate the outer wall of an artery or tube when

Hartmann parameter M rises, but it falls in the middle of the tube. In addition, we

noticed that the magnetic field is lower for bricks nanoparticle, the velocity is higher for

cylinder nanoparticle, but when we enhance magnetic field than the velocity of Platelets

particle also enhanced but for Bricks nanoparticle velocity field is lowered. Figure 3.3 de-

picts pressure rise against volume flow rate. It is analyzed that when Hartmann number

M increased the pressure rise also increases and particularly, pressure rise for Platelets

nanoparticles is higher as contrast to Bricks and Cylinder nanoparticles in the effective

nanofluid conductivity for dissimilar forms of the geometries of nanoparticles.

On the temperature distribution, the effect of different forms of nanoparticles is shown

In fig (3.6 and 3.7). The graphical analysis depicts that the temperature of the nanofluid

within the tube is greater at the z=0 of the tube and notably smaller at the outer peri-

staltic walls of the tube. The temperature grows as we alter the geometrical shapes of
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bricks nanoparticles to cylinders nanoparticles and then platelets nanoparticles, respec-

tively. Furthermore, we noted that temperature field depressed when the heat absorption

parameter increased ε. It is seen that thermal conductivity of the nanofluid increases if

we include the particular brick shape nanoparticles in the base fluid. Figure 3.3 depicts

the effect of different constraints on the pressure gradient. The pressure gradient shows

sinusoidal charcterstics and it gets bigger with an increase in the Grashof number Gr,

and its values dropped significantly as the Hartmann number M increases. Similar man-

ners, the temperature rises, the pressure gradient is also enhances for platelets than that

of cylinder and brick shaped nanoparticles shown in the figure 3.4 and3.5. The brick and

cylinder shaped nanoparticles influenced on streamlines is shown in the figure( 3.8-3.10).

It is noted that the accumulation of bolus for Bricks nanoparticles are higher, but the ex-

panse of the bolus of Bricks nanoparticle is smaller as compared to the Cylinder particles.

Figure 3.2: Influence of Hartman numbers M on velocity distribution.

.

.

.

.

.

.

.
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Figure 3.3: Influence of Hartman numbers M on pressure rise profile.

Figure 3.4: Influence of Gr on pressure gradient dp/dz .

Figure 3.5: Influence of M on pressure gradient dp/dz.

.
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Figure 3.6: Influence of ε on temperature θ(r).

Figure 3.7: Influence of ξ on Temperature profile θ(r).

Figure 3.8: Contours for bricks
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Figure 3.9: Contours for cylinders

Figure 3.10: Contours for platelets.

3.6 Concluding remarks

In this study different geometry of nanoparticles such as bricks, cylinders and platelets

mix with base fluid in straight channels under the effects of magnetic field. The behavior

of all such particles is different in velocity profile, pressure rise, pressure gradient. The

main findings are summarized as follows:

1. The velocity profile is depressing under the effects of increasing Hartmann number

in the central axis of the tube where it slightly increases on outer propagating walls.

2. In the strong magnatic field effects bricks nanoparticles showing enhanced velocity

profile than other nanoparticles.
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3. Pressure rise developed as the Hartmann number increases and platelets nanopar-

ticles remains higher than other sorts of nanoparticles.

4. The pressure gradient is clearly of sinusoidal form and it increases as the Grashof

number increased.

5. The pressure gradient in the straight vertical artery is decreased as a heat source

parameter increases.

The temperature of all shapes of geometric nanoparticles is different, but source

parameter in turn pressure gradient initiates to increase.

6. Stream lines exhibit that the flow in a vertical tube stays laminar under the effects

of peristalsis in the variation of all the quantities available in this study.



Chapter 4

Numerical study of peristaltic

flow of different shaped nanosize

particles in curved channel with

magnetic field effects

4.1 Introduction

In this chapter, we deal with the theoretical investigation of study of the peristaltic

transport of nanofluids with effects of magnetic field. Three different geometries of

nanoparticle namely bricks, cylinder and platelets are considered in our analysis. The

flow geometry is considered as a curved artery to analyze the model for various biomed-

ical applications. Numerical solutions are developed for the non-dimensional governing

equations subject to physically pragmatic boundary conditions. The effects of nanopar-

ticles shapes and the curvature of the artery on the axial velocity, for pressure rise,

temperature, pressure gradient and streamlines in a curved channel with variation of

different flow parameters are discussed with the help of graphical illustrations. It is

observed that bricks shaped nanoparticles carry the maximum velocity at the middle

of the artery, whereas far from the middle of the artery platelets nanoparticles exhibits

maximum velocity. The study also inferred that the instantaneous flow characteristics

are affected by the magnetic parameter and curvature parameter of the artery. It dis-

plays further that a magnetic field brings, the potential to control the flow of blood

arteries, pressure rise and pressure gradient. It is also possible to bring down these pa-

rameters to any appropriate level by increasing/decreasing the degree of intensity of the

32
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magnetic field. Thus, this study throws adequate light towards the therapeutic purpose

of external magnetic field in the clinical and medical care of hemodynamic diseases.

4.2 Formulation of the problem

Consider the flow of copper nanofluid of different geometries such as bricks, platelets

and cylinders in the axisymmetric circular curved artery of finite length (L). The motion

of the flow of different nanoparticles is controlled and managed by the external magnetic

field. The outermost surfaces or walls of the artery or tubes exhibit peristaltic motion.

The heat transfer analysis with different geometries of nanoparticles in the base fluid

(blood) is considered. Moreover, a constant temperature T0 has been taken at the

sinusoidally propagating wall of the curved tube (Fig. 4.1).

The flow in the fixed tube is time dependent in the fixed coordinates system. The

nanofluid flow is time independent in a wave frame coordinates system with the same

speed as well as the wave moves in the Z-direction. The walls of the artery are considered

as: In the fixed coordinates (R̄, Z̄), the flow between the two tubes is unsteady. It

r

R(X, t)

x

b

0 R

a c

Λ

g

Figure 4.1: Schematic diagram of the curved artery.

becomes steady in a wave frame (r̄, z̄) moving with the same speed as the wave moves

in the Z direction. The walls of the channel are considered as:

R̄ = ā+ b̄Sin

(
2π

λ
(Z̄ − ct̄)

)
, Upper wall (4.1)

− R̄ = −ā− b̄Sin
(

2π

λ
(Z̄ − ct̄)

)
, Lower wall (4.2)
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where c is the speed and λ denotes the wavelength.

4.3 Mathematical model

We consider the following definition of velocity

V̄ = [V̄R(Z̄, R̄, t̄), V̄Θ(Z̄, R̄, t̄), 0]. (4.3)

The equations of the conservation of mass and the linear momentum of the unsteady

flow of a nanofluid using a continuum approach

∇ ·V = 0. (4.4)

ρnf
DV

Dt
= ∇ · S + g(ργ)nf (T − T1), (4.5)

(ρCp)nf
DT

Dt
= L +Knf∇2T, (4.6)

Expression of chauchy stress S tensor for viscous fluid is

S = −pI + µnfA. (4.7)

In which I is the identity tensor, p(Z̄, R̄, t̄) the pressure, µnf is the dynamic viscosity of

nanofluid and the Rivlin- Erickson tensor A is

A = L + LT, (4.8)

where,

L = gradV, (4.9)

where superscript T represents the matrix transpose and

L =


∂Vr
∂R̄

R̄∗

R̄+R̄∗
∂Vr
∂z̄ −

V̄z
R̄+R̄∗ 0

∂Vz
∂R̄

R̄∗

R̄+R̄∗
∂Vz
∂z̄ + V̄r

R̄+R̄∗ 0

0 0 0



LT =


∂Vr
∂R̄

∂Vz
∂R̄

0
R̄∗

R̄+R̄∗
∂Vr
∂z̄ −

V̄z
R̄+R̄∗

R̄∗

R̄+R̄∗
∂Vr
∂R̄
− V̄z

R̄+R̄∗ 0

0 0 0


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Eq. (4.8) is of the form

A =


2∂Vr
∂R̄

R̄∗

R̄+R̄∗
∂Vr
∂z̄ −

V̄z
R̄+R̄∗ + ∂Vz

∂R̄
0

∂Vz
∂R̄

+ R̄∗

R̄+R̄∗
∂Vr
∂z̄ −

V̄z
R̄+R̄∗ 2

(
R̄∗

R̄+R̄∗
∂Vr
∂R̄
− V̄z

R̄+R̄∗

)
0

0 0 0


The continuity, momentum and energy equations in the presence of body force for the

considered geometry are

1

R̄

∂(R̄+ R̄∗)V̄r
∂R̄

+R∗∂V̄z
∂Z̄

= 0, (4.10)

ρnf

(
V̄r
∂V̄r
∂R̄

+
R∗V̄z
R̄+R∗

∂V̄r
∂Z̄
− V̄ 2

z

R̄+R∗

)
= −∂P̄

∂R̄

+µnf

(
1

R̄+R∗
∂

∂R̄

(
(R̄+R∗)

∂V̄r
∂R̄

)
+

(
R∗

R̄+R∗

)2 ∂2V̄r
∂Z̄2

− V̄r
(R̄+R∗)2

− 2R∗(
R̄+R∗

)2 ∂V̄z∂Z̄

)
(4.11)

ρnf

(
V̄r
∂V̄z
∂R̄

+
R∗V̄z
R̄+R∗

∂V̄z
∂Z̄

+
V̄rV̄z
R̄+R∗

)
= − R∗

R̄+R∗
∂P̄

∂z̄

+µnf

(
1

R̄+R∗
∂

∂R̄
((R̄+R∗)V̄z) +

(
R∗

R̄+R∗

)2 ∂2V̄z
∂Z̄2

− V̄z
(R̄+R∗)2

+
2R∗

(R̄+R∗)2

∂V̄r
∂Z̄

)

− σB2
0 V̄z + ρnfgα

(
T̄ − T0

)
(4.12)

(ρcp)nf

(
∂T̄

∂R̄
+

R∗

R̄+R∗
∂T̄

∂Z̄

)
= knf

(
1

R̄+R∗
∂T̄

∂R̄
+

1

R̄

∂2T̄

∂R̄2
+

(
R∗

R̄+R∗

)
∂2T̄

∂Z̄2

)
+Q0.

(4.13)

In the moving and fixed frames, the transformations are defined as::

r̄ = R̄, z̄ = Z̄ − ct̄, v̄r = V̄r, v̄z = V̄z − c, p̄(z̄, r̄, t̄) = P̄ (Z̄, R̄, t̄) (4.14)

The governing equations representing incompressible nanofluid expressed as:

1

r̄

∂(r̄v̄r)

∂r̄
+
∂(v̄z + c)

∂z̄
= 0, (4.15)

ρnf

(
vr
∂vr
∂r

+
R∗(vz + c)

r +R∗
∂vr
∂z
−

(vz + c)2

r +R∗

)

= −∂P
∂r

+µnf

(
1

r +R∗
∂

∂r

(
(r +R∗)

∂vr
∂r

)
+

(
R∗

r̄ +R∗

)2 ∂2v̄r
∂z̄2

− vr

(r +R∗)2 −
2R∗

r +R∗
∂vz
∂z

)
(4.16)
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ρnf

(
v̄r
∂v̄z
∂r̄

+
R∗(v̄z + c)

r̄ +R∗
∂v̄z
∂z̄

+
(v̄z + c)v̄r
r̄ +R∗

)
= − R∗

r̄ +R∗
∂P̄

∂z̄

+µnf

(
1

r̄ +R∗
∂

∂r̄

(
(r̄ +R∗)

∂v̄z
∂r̄

)
+

(
R∗

r̄ +R∗

)2 ∂2v̄z
∂z̄2

− (v̄z + c)

(r̄ +R∗)2
− 2R∗

(r̄ +R∗)2

∂v̄r
∂z̄

)
,

− σB2
0(v̄z + c) + ρnfgα

(
T̄ − T0

)
(4.17)

(ρcp)nf

(
∂T̄

∂r̄
+

R∗

r̄ +R∗
∂T̄

∂z̄

)
= knf

(
1

r̄ +R∗
∂T̄

∂r̄
+
∂2T̄

∂r̄2
+

(
R∗

r̄ +R∗

)2 ∂2T̄

∂z̄2

)
+Q0.

(4.18)

By simplifyig above equations, we obtain

1

r̄

∂(r̄v̄r)

∂r̄
+
∂(v̄z)

∂z̄
= 0, (4.19)

ρnf

(
vr
∂vr
∂r

+
R∗(vz + c)

r +R∗
∂vr
∂z
−

(vz + c)2

r +R∗

)

= −∂P̄
∂r̄

+µnf

(
1

r̄ +R∗
∂

∂r̄

(
(r̄ +R∗)

∂v̄r
∂r̄

)
+

(
R∗

r̄ +R∗

)2 ∂2v̄r
∂z̄2

− v̄r
(r̄ +R∗)2

− 2R∗

r̄ +R∗
∂v̄z
∂z̄

)
,

(4.20)

ρnf

(
v̄r
∂v̄z
∂r̄

+
R∗(v̄z + c)

r̄ +R∗
∂v̄z
∂z̄

+
(v̄z + c)v̄r
r̄ +R∗

)
= − R∗

r̄ +R∗
∂P̄

∂z̄

+µnf

(
1

r̄ +R∗
∂

∂r̄

(
(r̄ +R∗)

∂v̄z
∂r̄

)
+

(
R∗

r̄ +R∗

)2 ∂2v̄z
∂z̄2

− (v̄r + c)

(r̄ +R∗)2
− 2R∗

r̄ +R∗
∂v̄r
∂z̄

)

− σB2
0(v̄z + c) + ρnfgα

(
T̄ − T0

)
, (4.21)

(ρcp)nf

(
∂T̄

∂r̄
+

R∗

r̄ +R∗
∂T̄

∂z̄

)
= knf

(
1

r̄ +R∗
∂T̄

∂r̄
+
∂2T̄

∂r̄2
+

(
R∗

r̄ +R∗

)2 ∂2T̄

∂z̄2

)
+Q0.

(4.22)

where vr and vz are the components of velocity along axial and radial directions of the

flow respectively. The fluid local temperature is T . Moreover, the effective density is

ρnf , the effective thermal conductivity is knf ,the effective thermal diffusibility is αnf ,the

effective dynamic viscosity is µnf and the heat capacitance is (ρcp)nf of the nanfluid.

We utilize the thermophysical properties are given as
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µnf =
µf

(1− φ)2 , ρnf = (1− φ)φf + φρs, ρnf = (1− φ)φf + φρs,

ρnf = (1− φ)φf + φρs. (4.23)

In the above expressions ρf is density, µf is viscosity,the heat capacitance and thermal

conductivity of base fluid represent (ρcp)f and kf respectively. ρs is density, γs is

thermal expansion coefficient, (ρcp)s is heat capacitance, ks is thermal conductivity of

the materials constituting Cu-nanoparticles and φ is the solid nanoparticle of nanofluid.

By introducing a shape factor, Maxwell [33] and other worker have developed Hamilton

and Crosser model [34] in which geometries of irregular particle taken into account. As

stated by this model, when the thermal conductivity nanoparticles is 100 times enhanced

that of the base fluid, the expression of thermal conductivity of different geometries of

nanoparticles will be

Knf

Kf
=
ks − (m+ 1)(kf − ks)φ+ (m+ 1)kf

ks + (kf − ks)φ+ (m+ 1)kf
(4.24)

where, the thermal conductivities of the particle material and the base fluid are ks and

kf . The shape factors of geometries of nanoparticles is m in HamiltonCrosser model.

As stated by them, the values of geometrical shape factor of nanoparticle are stated in

table 4.1 and table 4.2.

Nanoparticles shape factor number

Platelets 5.7

Cylinders 4.9

Bricks 3.7

Table 4.1: Nanoparticles shape factor

Physical properties Fluid phase (blood). Cu

cp(J/kgK) 3594 385

ρ(kg/m3) 1063 8933

k(W/mK) 0.492 400

γ/K × 10−5 0.18 1.67

Table 4.2: Theromophysical properties of copper nanoparticles.

The dimensional boundary conditions are:

∂vz
∂r

= 0,
∂θ

∂r
= 0 at r = 0, vz = 0, θ = 0 at r = R(z) = 1 + εcos(2πz). (4.25)
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In order to achieve the simplified governing equations, we bring into use the following

nondimensional quantities:

r =
r̄

a
, z =

z̄

λ
, vr =

λv̄r
ac

, vz =
λv̄z
ac

, t =
ct̄

λ
,

p =
a2p̄

λcµf
, Gr =

ρnfa2gαT0

cµf
, ξ =

Q0a
2

T0knf
, θ =

T − T0

T0
.

Making use of these variables in Eqs.(4.19) to (4.22) :

1

ar

∂(ar arvrλ )

∂(ar)
+
∂(cvz)

∂(λz)
= 0, (4.27)

ρnf

(
acvr
λ

∂(acvrλ )

∂(ac)
+
R∗(cvz + c)

R∗ + ar

∂(acvrλ )

∂(λz)
− (cvz + c)2

R∗ + ar

)

= −
∂(

cλµf
a2 p)

∂(ar)
+ µnf

(
1

R∗ + ar

∂

∂(ar)

(
(R∗ + ar)

∂(acvrλ )

∂(ar)

)
+

(
R∗

R∗ + ar

)2 ∂2(acvrλ )

∂(λ2z)

−
(acvrλ )

(R∗ + ar)2
− 2R∗

R∗ + ar

∂(cvz)

∂(λz)

)
, (4.28)

ρnf

(
acvr
λ

vz
∂(ar)

+
R∗(cvz + c)

R∗ + ar

∂(cvz)

∂(λz)
+

(cvz + c)acvrλ
R∗ + ar

)

= − R∗

R∗ + ar

∂(
cλµf
a2 p)

∂(λz)
+ µnf

(
1

R∗ + ar

∂

∂(ar)

(
(R∗ + ar)

∂(cvz)

∂(ar)

)
+

(
R∗

R∗ + ar

)2 ∂2(cvz)

∂(λz2)

− (v̄r + c)

(R∗ + ar)2
− 2R∗

R∗ + ar

∂(cvr)

∂(λz)
− σB2

0(cvz + c) + ρnfgαθT0, (4.29)

(ρcp)nf

(
∂(θT0 + T0)

∂ar
+

R∗

ar +R∗
∂(θT0 + T0)

∂λz

)

= knf

(
1

ar +R∗
∂(θT0 + T0)

∂ar
+
∂2(θT0 + T0)

∂ar2
+

(
R∗

ar +R∗

)2 ∂2(θT0 + T0)

∂λz2

)
+Q0.(4.30)
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After simplifying the above Eqs.

∂vr
∂r

+
∂vz
∂z

= 0, (4.31)

Reδ
3 ρnf
ρf

(
∂vr
∂r

+
(vz + 1)

r + k

∂vr
∂z
− (vz + 1)2

r + k

)
= −∂p

∂r

+ µnf

(
δ2 1

r + k

∂

∂r

(
(r + k)

∂vr
∂r

)
+ δ2

(
1

r + k

)2 ∂2vr
∂z2
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(4.32)
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+
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∂r2
+ δ2

(
k

k + r
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a2Q0

T0kf
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(4.34)

Considering the assumptions of low Reynolds number and larger wavelength. We obtain

the dimensionless form of constituting equations (4.32)- (4.34).

∂p

∂r
= 0, (4.35)

∂p

∂z
=

1

(1− φ)2

(
1

k + r

∂

∂r

(
(k + r)

∂vz
∂r

)
− vz + 1

(k + r)2 −
2k

(k + r)2

∂vz
∂r

)
−M2(vz + 1) +Grθ, (4.36)

1

r + k

∂

∂r

(
(r + k)

∂θ

∂r

)
+
ks + (m+ 1)kf − (m+ 1)(kf − ks)φ

ks + (m+ 1)kf + (kf − ks)φ
ξ = 0. (4.37)

where, the heat absorption parameter, Hartmann number and Grashof number are re-

spectively denoted as ξ, M and Gr.
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The dimensionless boundary conditions are stated as:

∂θ

∂r
= 0,

∂vz
∂r

= 0 at r = 0, θ = 0, vz = 0 at r = R(z) = 1 + εcos(2πz). (4.38)

4.4 Solutions development

The transformed governing equations (4.36) and (4.37) subject to the boundary con-

ditions (4.38) are solved numerically utilizing the finite difference scheme. The central

differences are employed to discritize the derivatives.

∂2U(xn)

∂x2
=
Un+1 − 2Un + Un−1

2h
, (4.39)

and
∂U(xn)

∂x
=
Un+1 − Un−1

h2
, (4.40)

we obtain the set of equations as

Un+1 − 2Un + Un−1

2h
+An

Un+1 − Un−1

h2
+BnUn = Dn for n = 1, 2, 3, ..., N (4.41)

(2−hAn)Un−1 +(2h2Bn−4)Un+(2+hAn)Un+1 = 2h2Dn for n = 1, 2, 3, ..., N (4.42)

Using notations

an = 2− hAn,

bn = 2h2Bn − 4,

cn = 2 + hAn,

and

γn = 2h2Dn.

anUn−1 + bnUn + cnUn+1 = γn (4.43)

From the boundary conditions

U1 − U0

h
= Un, UN = b, (4.44)

U0 = U1 − Unh, UN = b. (4.45)
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4.5 Graphical results and discussion

The numerical solutions achieved by using the finite difference scheme in the previous

section have been investigated graphically for various physical parameters. Figure 4.2

displays the velocity distribution for various geometrical shapes of the nanoparticles i.e.,

(Bricks, cylinders, Platelets) and unlike values of curvature parameter K of curved tube.

It is shown that when we enhance curvature parameter K the field of velocity enhances

near the center of the curved peristaltic tube rapidly than at the neighborhood of the

wall. It is also depicted that velocity distribution is a little higher for nanoparticles of

the bricks than that of the nanoparticles of cylinders and platelets with each values of

curvature paramaeter K. This means that in straight arteries the Bricks, Cylinder and

Platelets nanoparticles significantly enhance its velocity. Figure. 4.3 presents variant of

velocity distribution for distinct geometries (shaped) of the nanoparticles with varying

Hartmann parameter M . It is presented that when we enhance Hartmann parameter M

velocity distribution decreases slightly near the tube wall as well as significantly at the

center of the curved tube. It is depicted that by enhancing Hartmann parameter M ve-

locity distribution depressed. Bricks particles showing higher velocity than the cylinder

particle and platelet particles when exposing all of them in a magnetic field. Figure 4.4

presents changes occur in velocity distribution for various geometries of the nanoparti-

cles with varying heat source parameter ξ. This velocity distribution depicts that when

we enhance heat source parameter ξ the distribution of velocity decreases adjacent to

the outer wall as well as at the central position of the curved tube. Figure 4.5 presents

changes occur in velocity distribution for various geometries of the nanoparticles with

varying Grashof number Gr. This velocity distribution depicts that when we enhance

Grashouf number Gr the distribution of velocity increases adjacent to the outer wall

as well as at the central position of the curved tube. Bricks geometries of nanoparti-

cles improve the speed than the other shapes of nanoparticles in the velocity distribution.

Figures 4.6 and 4.7 are drawn for the important parameter of interest, Figuer 4.6 present

pressure rise against flow rate. It is seen that when enhancing curvature parameter K

pressure rise also enhanced for Bricks as compared Cylinder and Platelets nanoparticles

geometries. It is also noted that for Platelets nanoparticles pressure decreases in the

flow rate region (−1 ≤ F ≤ 0) but it shows reverse character in the region (0 ≤ F ≤ 1),

similar behavior is maintained by other nanoparticles, Cylinder nanoparticles changes

in the region (−1 ≤ F ≤ 0.05) and opposite behavior in the region (0.05 ≤ F ≤ 1) and

Brickes nanoparticles changes in the region (−1 ≤ F ≤ 0.1) and opposite behavior in

the region (0.1 ≤ F ≤ 1)). For positive values of flow rate the pressure rise increase as

compared to negative values of flow rate. Figure 4.7 displays pressure rise against flow
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rate. It is seen that when we enhance Hartmann parameter M pressure rise enhances

for Bricks as compared other shaped geometries of nanoparticles. It is noticed that,

for Platelets nanoparticles the pressure P decreases in the flow rate region (−1 ≤ F ≤
0.05) but it shows reverse character in the region (0.05 ≤ F ≤ 1), similar behavior is

maintained by other nanoparticles, Cylinder nanoparticles changes in the region (−1 ≤
F ≤ 0.05) and opposite behavior in the region (0.05 ≤ F ≤ 1) and Brickes nanoparticles

changes in the region (−1 ≤ F ≤ 0.1) and opposite behavior in the region (0.1 ≤ F ≤ 1).

For positive values of flow rate, the pressure rise increases as compared to negative values

of flow rate.Now we discuss the effects of different parameters of interest on the pressure

gradient of the problem in Figures 4.8 and 4.9. It is observed that the pressure gradient

has a sinusoidal behavior and its increases with the increase in curvature parameter K

and its values fall significantly as enhances the Hartmann parameter M. The pressure

gradient is larger for platelets geometry nanoparticles than than that of the cylinder

and brick sized nanoparticles for curvature parameter while it falls for the increase in

Hartmann number. The impact of different shapes geometries of nanoparticles on the

temperature profile is depicted in Figures. 4.10 and 4.11. The temperature of the

nanofluid containing different nanoparticles within the tube is greater at the central

section and depressed at the outer peristaltic walls. Temperature increases from bricks

to cylinders and platelets geometrical nanoparticles, respectively. Further we observe

that temperature profile depressed with the increase in the heat absorption parameter

ξ and it also depressed when amplitude of the peristaltic wall ε increases. Trapping

represents an interesting phenomenon for the fluid flow. This phenomenon gain more

attracting in the presence of different geometrical shaped Cu-nanoparticles in peristalsis.

Figure. (4.12-4.14) reveals that the size of the tapping bolus of Bricks nanoparticles is

smaller than the boluses formation with cylinder and Platelets shaped nanoparticles.

It is depicted that the number of bolus for Bricks particles are more than any other

nanoparticles but size of the bolus formed by Bricks nanoparticle is compact as compare

to the Cylinder nanoparticles and Platelets nanoparticles geometeries.
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Figure 4.2: Influence of K on velocity profile for different shape of the nanoparticles.

Figure 4.3: Influence of M on velocity profile for different shape of the nanoparticles.

Figure 4.4: Influence of ξ on velocity profile for different shape of the nanoparticles.
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Figure 4.5: Influence of Gr on velocity profile for different shape of the nanoparticles.

Figure 4.6: Influence of K on pressure rise for different shape of the nanoparticles.

Figure 4.7: Influence of M on pressure rise for different shape of the nanoparticles.
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Figure 4.8: Influence of K on pressure gradient dp/dz.

Figure 4.9: Influence of M on pressure gradient dp/dz.

Figure 4.10: Influence of ε on temperature profile θ(r).

4.6 Concluding remarks

Numerical solutions are developed for the non-dimensional governing equations subject

to physically pragmatic boundary conditions. The effects of nanoparticles shapes and
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Figure 4.11: Influence of ξ on temperature profile θ(r).

Figure 4.12: Contours for bricks.

Figure 4.13: Contors for cylinders.

the curvature of the artery on the axial velocity, for pressure rise, temperature, pressure

gradient and streamlines in a curved channel with variation of different flow parameters.

The main findings are summarized as follows:
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Figure 4.14: Contours for platelets.
r Bricks Cylindrs Platelets

0 2.957017 2.956916 2.956869

0.1 2.866349 2.866258 2.866218

0.2 2.604559 2.604505 2.604480

0.3 2.184190 2.184188 2.184187

0.4 1.616697 1.616752 1.616778

0.5 0.896117 0.896212 0.896256

0.6 0.023503 0.023592 0.023634

0.7 -1 -1 -1

Table 4.3: Numerical values of velocity profile at Bricks, Cylindrs and Platelets for
different nodes.

1. By enhancing curvature parameter K field of velocity enhances near the center of

the curved peristaltic tube rapidly than at the neighborhood of the wall.

2. It is also depicted that velocity distribution is a little higher for nanoparticles of

the bricks form than for nanoparticles of cylinders and platelets form with each

value of curvature paramaeter K.

3. Hartmann parameter M then then velocity distribution decreases slightly near the

tube wall as well as significantly at the centre curved tube. tube.

4. It is depicted that by enhancing Hartmann parameter M velocity distribution de-

pressed. Bricks particles showing higher velocity than the cylinder particle and

platelet particles when exposing all of them in a magnetic field.
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5. The velocity distribution depicts that when we enhance source parameter ξ the

distribution of velocity decreases adjacent to the outer wall as well as at the central

position of the curved tube. Bricks geometries of nanoparticles improve the speed

than the other shapes of nanoparticles in the velocity distribution.

6. By increasing Hartmann parameter M pressure rise enhances for Bricks as com-

pared to other shaped geometries of nanoparticles.

7. Pressure gradient shows a sinusoidal characteristic and it increases with the in-

crease in curvature parameter K and its values fall significantly as the enhances

Hartmann parameter M .

8. By increasing Hartmann parameter M pressure rise enhances for Bricks as com-

pared to other shaped geometries of nanoparticles. The pressure gradient holds

larger values for platelets geometry nanoparticles than which of the briks and cylin-

der shaped nanoparticles for curvature parameter while it falls for the increase in

Hartmann number.

9. Temperature profile is symmetric about central line.The temperature of the bricks

nanoparticles falls down with the increase of heat source paramaqter ξ whereas

temperature of cylinder and platelets nanoparticles enhance significantly.

10. The trapping bolus has smaller size for the Bricks nanoparticles as compaired to

the boluses formation as compared to other shaped nanoparticles under our con-

sideration.

11. The boluses for Bricks particles are greater in number than any other kind nanopar-

ticles.



Chapter 5

Conclusion

In the present study, it is investigated that the effects and behaviour of different types

of nanoparticles such as Bricks, cylinders and platelets in curved tube in the exposition

and presence of magnetic field with symmetric boundary conditions in both momentum

and energy equations. Numerical solution of these modelled ODEs are acquired by

using Finite Difference method which is usefull to solve fluid mechanics problems for

complicated geometries. Graphical results are provided to analyse the flow behaviour in

the curved tube with peristaltic walls.

It is evident that blood flows carring oxygen and other vital nutrients through blood

arterial system. At some positions in human body artries are straight, vertical, curved

and bifurcated. So clearly flow of blood effects greatly by the physiology of arteries.

Plenty of work regarding parastaltic flow is available in literature whereas very few

research has been conducted in curved tubes /arteries. But the nanoparticles of different

geometries immersed in blood flowing through curved tube. In curved tube curvature

of tubes/arteries notably influences blood flows. It is seen in chapter four curvature

of artery decreases blood flow in centre of the tube.For controlling and managing flows

magnetic fields are imposed. As we have observed that Hartman number hinders the

flow. Moreover by applying heat source parameter,flow of blood decreases where as

Garshof number favors the flow. The curvature and magnetic field also effects the

pressure of the system. We have seen in chapter four the curvature of artery increases

pressure in the lower part of artery and decreases in the upper part of artery, the same

results are drown with the magnetic field which is exposed externally to the human

body.

49



Bibliography

[1] F.Yin,Y.C.Fung. Peristaltic waves in circular cylindrical tubes, Journal Applied

Mechanics 36,(1969),579-587.

[2] J. C Burns,T. Parkes,Peristalatic motion, Journal of Fluid Mechanics 29,(1967),

731-743.

[3] L.M.Srivastava, V.PSrivastava,Peristaltic transport of a particle-Fluid suspension,

Journal of Biomechanics and Engieering 111,(1989),157-1.

[4] N.A.S. Afifi, N.S. Gad, Interaction of peristaltic flow with pulsatile magneto-fluid

through a porous medium, Acta Mechanica 149,(2001),229-237.

[5] J. C. Misra ,S.K.Pandey, Peristaltic transport of blood in small vessels: study of

a mathematical model, Computers Mathematics with Applications 43,(2002),

1183-1193.

[6] Kh.S Mekheimer,Peristaltic flow of bleed under effect of a magnetic field in a

nonuniform channels model,Applied Mathematics and Computation 153,(2004),

763-777.

[7] S. Nadeem,N.S Akbar, Effects of heat transfer on the peristaltic transport od MHD

Newtonion fluid with variable viscosity:application of Adomian decomposition

method,Communications in Nonlinear Science and NumericalSimulation 14,(2009),

3844-3855.

[8] M. V. Subba Reddy, M. Mishra, S.Sreenadh, A.R.Rao Influence of lateral walls on

peristaltic flow in a rectangular duct ,Journal of Fluids Engineering 127,(2005),

824-827.

[9] V.Aranda, R.Cortez ,L. Fauci, Stokesian peristaltic pumping in a three-dimensional

tube with a phase shifited asymmetric rectangular duct. Physics Fluids 23,(2011),

081901-081910.

50



Bibliography 51

[10] Kh.S.Mekhmeimer,S.Z.A. Husseny,A. I.Abd el Lateef ,effect of lateral walls on peri-

staltic flow through an asymmetric rectangular duct.Applied Bionics and Biome-

chanics 8,(2011),295-308.

[11] S. Akram, Kh.S. Mekhmeimer, S Nadeem, Influence of Lateral walls on peristaltic

flow of a couple stress fluid in a non-uniform rectangular duct ,Applied Mathe-

matics Information Science 8. (2014),11-27.

[12] T.W. Latham,Fluid motion in a peristaltic pump,Masschusetts Intitute of Tech-

nology, Cambridge, (1966).

[13] S.Srinivas, M. Kothandapani, IPeristaltic transport in an asymmetric channel with

heat transfer, Heat and Mass transfer 35,(2008),514-514.

[14] KH. S. Mekheimer, Y.A. Elmaboud, Peristaltic flow through a porous medium

in an annulus: application of an endoscope, Applied Mathematics Information

Sciences 2, (2008),103-121

[15] C.Vasudev, U.R. Rao, G.P. Rao, M.V.SW. Reddy, Peristaltic Flow of a Newtonian

fluid on Porous medium in a vertical tube under the effect of a magnetic field

,International Journal of Current Research 1, (2011),105-110.

[16] S.R . Mahmoud, N.A.S.Afifi, H.M.Al-Isede,Effect of porous and magnetic field

on peristaltic transport of a Jeffrey fluid, International Jornal of Mathematical

Analysis 5,(2011),1025-1034.

[17] O. Manca, S. Nardini, D.Ricci A numerical stdy of nanofluids forced convection in

ribbed channels, Applied Thermal Engineering 37,920120,280-292

[18] X.Wang, A.S.Mujumdar, Heat transfer characteristics of nanofluids; a review,

International Journal of Thermal Sciences 46,(2007),1-19

[19] S. Nadeem, E. N.Maraj, The mathematical analysis for peristaltic flow of a nanofluid

in a curved channel with compliant walls, Applied NanoSciences 4,(2014),85-92.

[20] N.S. Akbar, S. Nadeem, T.Hayat, A.A Hendi ,Peristaltic flow of nanofluid in a

non-uniform tube, Heat Mass Transfer 48,(2012),481-459.

[21] C.Barton and S. Raynor S, Peristaltic flow in tubes, The Bulletin of Mathematical

Biophysics 30,(1968),663-680.

[22] A.Mathur ,Performance and implementation of the Launder- Sharma low Reynolds

number turbulence model, Computers Fluids 79,(2013),134-139.



Bibliography 52

[23] K.Mehmood, s. Hussain ,M. Sagheer, Numerical simulation of MHD mixed convec-

tion in aluminawater nanofluid filled squaqre porous cavity using KKl model: Ef-

fects of non-linear thermal radiation and inclined mafnetic field, Journal of Molec-

ular Liquids 238,(2017),485-498.

[24] M. Bilal, M. Sagheer, S. Hussain, Three dimensional MHD upper-convected Maxwell

nanofluid flow with nonlinear radiative heat flux, Applied Mathematics and Comp-

tation,(2017), In Press.

[25] J. Buongiorno, Convective transport in nanofluids, Journal of Heat Transfer 128,

(2006),240-250.

[26] S.Kline, Similitude and Approximation Theory, McGraw Hill,(1965).

[27] H.Douglas, De.Gerard.An Interoducion to Finite Element Analysis,Acadamic Press,

(1978).New Yark.

[28] R.Hamilton, K. Crosser, Thermal conductivity of hertogenous component system,

Industrial and Engineering Chemistry Fundamentals 1, (1962),187-191.

[29] S. Jan,SUS. Choi, Role of Brownian motion in the enhanced thermal conductivity

of nanofluids. Applied Physics Letter 84. (2004),4316-4318.

[30] E. Efstathios, Michaelides, Nanofluidies: thermodynamics and transport proper-

ties, Springer International Publishing Switzerland.

[31] JC. Maxwell, A Treatise on Electricity and Magnetism, Clarendon Press, (1873),Ox-

ford.

[32] RL. Hamilton, Thermal conductivity of heterogeneous two-component system, In-

dustrial and Engineering Chemistry Fundamentals 1, (1962),187-191.

[33] EV. Timofeeva, JL.Routbort, D. Singh, Particle shape effects on thermophysical

properties of alumina nanouids, Journal of Applied Physicsn106, (2009), 0143 304.

[34] K.Nowar, Peristaltic Flow of a Nanofluid under the Effect of Hall Current and

Porous Medium, Mathematical Problems in Engineering, (2014).


	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Nomenclature
	Greek Symbols
	1 Introduction
	2 Basic definitions and governing Equations
	2.1 Fluid
	2.2 Classification of fluids 
	2.3 Basic Concepts of Heat transfer
	2.4 Dimensionless numbers
	2.5 Amplitude ratio
	2.6 Some fundamentals of peristaltic transport
	2.7 Fundamental equations
	2.8 Two-Phase Model Governing Equations
	2.9 Solution Methodology

	3 Ferromagnetic effects for peristaltic flow of Cu-blood nanofluid for different shapes of nanosized particles
	3.1 Introduction
	3.2 Formulation of the problem
	3.3 Mathematical model
	3.4 Solutions development
	3.5 Graphical results and discussion
	3.6 Concluding remarks

	4 Numerical study of peristaltic flow of different shaped nanosize particles in curved channel with magnetic field effects
	4.1 Introduction
	4.2 Formulation of the problem
	4.3 Mathematical model
	4.4 Solutions development
	4.5 Graphical results and discussion
	4.6 Concluding remarks

	5 Conclusion



